
[% _ Le . :

APPLICATION

EYE ROBOT We discover how robots may
be made to ‘see’, either by reference to a
pre-stored image, or pre-programmed
information about an object

HARDWARE

CAMERA OBSCURA The Snap camera is
an intriguing new peripheral for the BBC
Micro that enables images received by the
camera to.be relayed directly onto a screen

MAKING PLANS Our series on
spreadsheet programs continues with a look
at the versatile Graph Plan; a combined
spreadsheet and graphics package for the
BBC Micro with a Z80 second processor

RED ALERT Flyerfox is a fast action game
that puts you in the cockpit of a modern
fighter plane

POETRY IN MOTION List processing is a
central feature of the LoGo language; we
look in detail at how it is implemented

HERTZ TO HI-RES GRAPHICS
A weekly glossary of computing terms

PROGRAMMING PROJECTS

ALL CHANGE Our project to create a
variable search and replace program utility is
now complete as we pe the Spectrum
version

MACHINE CODE

BUG REPELLENT We begin a project to
develop a machine code debugging ee 758

SETTING THE TONE We create a machine
code program that controls the volume and
pitch of digitally synthesised sound

/A6

REFERENCE CARD We continue to list : INSIDE
extracts from the Z80 programmers’ BACK
reference card COVER

| @ We begin a new

Next Week
@ Continuing our series on
spreadsheet modelling, we
look at Multiplan from
Microsoft, which incorporates L
many new features.

programming project as we \
investigate the techniques
involved in programming an
adventure game.

© The Beasty is a low-cost
robot arm for the BBC Micro.

Editor Vike Wesley Art Director David Whelan Technical Editor Bran Woris Production Editor Catherine |
Cardwell Art Editor Claudia Ze) Chief Sub Editor Rober Pickering Designer Jujian Dor Art Assistant | 2
Dixon Staff Writer Stechen Malone Sub Editor Steve Vian Researcher Vielanie Davis Consultant Editor Sieve
Colwill Contributors Geol! Bains, Harvey Vellar Vike Curis Steve Colwill Unis Nayior ony Harrington, Steve
Malone ted Ball Software Consultants Pio! Software City. Group Art Director Perry Neviie Managing Director
stephen England Published by Orbis Publishing Ltd: Editorial Director B00 ocs Project Development Petc:
Brookesmuth Executive Editor Viauoce Geller Production Controller Pele: Jayior Viechurst Designed and
produced by Bunch Partworks Ltd: Editorial Office (4 Rathbone Place, London WIP IDE © APSIF Copenhagen
1984: © Orbis Publishing Ltd 1984: Typeset by Universe: Reproduction by Mullis Morgan Ltd: Printed in Great Britain
by Artisan Press Ltd, Leicester

HOW TO OBTAIN ISSUES AND BINDERS FOR THE HOME COMPUTER ADVANCED COURSE — scves can be obtained by
Placing ah order with your newsagen! of direct from our SUDSCriDnon denariment | you fave any diticulty
ODIINING any Dack ISSueS Troi your newsagent Dlease wiite to US Siating (ne Issueis) required and enclosing 4
chegue for the cover price of the issues) AUSTRAUA — plcase while to Gordon & Gotch (Aus) Lid 114 Wiham
street PO Box /6/G Meibourme Vicioria 3001 MALTA, NEW ZEALAND & SCUTH AFRICA - Gack cubes ae
available at Cover orice rom your Newsagent In case of ciicully, wate to the address given ior binders.
UR/JEIRE — Price SOp/IRE| Subscription 6 months £2392 | Year £47 84 Binder please send $3.95 per
binder of lake advantage of our Special ile: mm) Gary issues EUROPE Fice 80p Subscription G montis ay |
£a/ Sb Surface £3146 | year a £/5.02 Surace £02.92 Binder £5.00 Armal £500. MALIA- Obtain
binders trom your newsagent or Willer (Malta) Lid MA Vassalli Street, Valetta Malta Price £3 95, MIDDLE EAST -
Price 800 SUDSCHOON 6 monins ar £43.04 GSullace £4140 | year al £87 68 Surface £6292 Binder
£500 Alma £8 31 AMERICAS/ASIA/AFRICA Fiice US/CANS1 95/800 Subscription 6 months a £5174
Sudace £3146 | yearal £103 48 Surace £62 92 Binder £5.00 Ala 69 44 SOUTH AFRICA Fice SA
R195 Obtain binders trom any branch of Central News Agency of intermag PO Box 5/394 Springtield 2137
SINGAPORE — Price Sing S450 Obtain binders fom MPH Disthibutors 601 Sims Dive 03-07-21 Singapore ©
1438. AUSTRALASIA/FAR EAST — Price 8Up Subscription 6 montis a £55 ge Su lace $3146 1 year ar
£110 76 Surace £62 92 Binder £5.00 Alma £9 84 AUSTRALIA Piice AusS195 Ubiain binders omit
Post Pty Lid. 23 Chandos Street, St Leonards, NSW 2065 NEW ZEALAND - Price NZS2 25 Obtain binders from
your dewsagent oF Gordon & Gotch (NZ) Lid PO Box 1595 Wellingion
ADDRESS FOR BINDERS AND BACK ISSUES — 0:b)s Publishing Limiied Oroic House Bedlormdbury | ondon WO?

| ABL lelepnone 0)-3796/11 Uheaues/osial orders should be made payable 1b Oris Publishing Limited Blader
prices include postage and Dacking and prices are in Stirling Back issues are Sold al ine cover orice and we do not
charge carriage in te UK
NOTE — Binders and back issues are oDlainable subject to availability of stocks Whilst every attempt is made to
keep te price of ine issues and binders constant tne oublsners reserve [he right (0 increase [6 siated prices ai
any Ume when crcumstances diclate Binders depicted 1) US Dublication are those produced for the UK and
Australian markets only. Binders and issues may be Subject to Import duty and/or local taxes. Which ate not
included in the above prices unless stated.
ADDRESS FOR SUBSCRIPTIONS — Orbis Publishing Limited, Hurst Farm, Baydon Road, Lambourm Woodlands.
Newbury Berks RGio /1W. lelepnone 0486-72606 All cheaues/p0Stal orders should be made payable to Urbis
Publishing Limited Postage and packaging is Included in subscription rates, and prices are given in Sterling.

COVER PHOTOGRAPHY BY A. PIDGEON

Our investigation into the topic of robotics
has now considered several different ways in
which a robot may be programmed to act
‘intelligently’. Here we examine the
problems involved in enabling a robot to
‘see’ objects i in the world around it.

pon ee ee

Of all the human senses, vision is perhaps the most
important. So central are visual perceptions to our
understanding of the world that the phrase ‘it is
like trying to describe colour to a blind man’ is
often used to illustrate the difficulties involved in
explaining a person’s lack of understanding of a
particular subject. Without vision, our knowledge
of the world is severely restricted — and, similarly,
a robot with no visual apparatus is equally
handicapped. We have already seen how robots
can use sensors to detect the presence of an object
in their path; now we want to develop a system
that will provide them with visual equipment that
is as efficient as a human being.

The human eye has an iris that acts as a lens,
controlling the amount of light entering it, and a
retina onto which the lens focuses the image. But
the fact is that the eye does not really ‘see’ anything
at all; it is merely a transducer that converts one
signal into another, more acceptable, form. The
real job of seeing is carried out by the brain on the
basis of the signals it receives from its sensors.
So in robot vision we can divide the subject into

two quite distinct parts. The first concerns the
construction of an appropriate ‘eye’ to act as a
sensor for the robot's vision system; the second
part consists of the computer processing that must
be carried out before the robot can make sense of

the signals from this sensor.
Constructing a robot eye is not too difficult. At

its very simplest level, a photoelectric cell can act
as a type of eye. This can give a signal that
corresponds to the overall illumination of the field
of view — as we have already seen, this can be
useful if we simply want our robot to ‘home in’ ona
bright light or to follow a white line painted on a
dark background. The program to use this sensory
input may also be simple because the information
received is limited and there is a proportionately
limited number of actions that the robot could
follow as a result of such simple signals.

But we can hardly call this ‘vision’, in the sense.
that we understand the word. Specifically, we
require a visual system that can build up a
complete two-dimensional image of the world,
enabling the robot’s ‘brain’ to examine exactly the
same information that is processed by the human
brain and arrive at an answer.

One answer to this problem uses a single
photoelectric cell with a lens placed in front of it.
This scans the image area in front of the robot,
mechanically sweeping the entire field of vision
until a complete picture has been built up; the
picture can then be stored in the computer's
memory. In practice, unfortunately, this method is
slow and unreliable.

In most cases, however, the robot eye consists of
a video camera of some sort. This camera may be
the standard type that is used in television
broadcasting, or it may be a specialised device that
is designed specifically for robotic vision. Some
forms of the latter type use special chips called
Optical RAMs — these consist of RAM memory
in which the value of each byte is set automatically

THE HOME COMPUTER ADVANCED COURSE 741

Robot Vs. Human Vision
The nature of the human's
ability to see relies very heavily
on the interaction between a
complex system of nerves and
receptors, all processed by the
brain. Although a visual image
consists of patterns of light and
dark imprinted on the retina, the
actual ‘seeing’ is done in the
brain. A robot's brain also
processes an image of light and
dark patterns, but suffers from a
much lesser degree of precision

STEVE CROSS

KEVIN JONES —

The colour patterns shown,
taken from Ishihara’s tests for
colour blindness, measure
red-green deficiencies. In the
first example, persons with
normal vision will see the
number 74, while persons
with a red-green deficiency
will see the number 21. In the
second example, normal

vision will see nothing, or
only a dim outline of a figure
2, while red-green deficient

viewers will clearly see a 2

What You Think You See

the vertical line in the left-

Which is longer? The Muller-
Lyer illusion makes you think

hand figure is longer than the
vertical line on the right. In
fact, they are the same length

In the railway illusion, the
upper horizontal bar appears
to be longer, no matter how
the figure is viewed. In fact,
both horizontal bars are the
same size

An ‘impossible’ figure, which
blends valid-looking shapes

across two dimensions.
Research shows that humans
are unable to recognise this as
an object

Although the vertical lines
appear to bend, they are
actually straight. The eye bends
the image to conform with the
spread of the rays

byte. These devices are becoming increasingly
cheap and provide an area of RAM memory that
contains all the information concerning the scene
viewed by the robot's eye.

In general, the output from a robot eye is held in
a two-dimensional array, each element of which
contains a value that corresponds to the brightness
of the light falling on that particular part of the
scene being viewed. The number of elements in
the array gives the resolution of the image, and the
range of numbers that can be held in each array

742 THE HOME COMPUTER ADVANCED COURSE

by the amount of light falling on that particular —

element determines the number of grey scalelevels
that can be discerned. Traditionally, in vision
systems each element of the array is called a pixel,
or ‘picture element’. So an image array of 500 by
250 pixels that represents brightness leveis by
allocating one byte to each pixel would have a
horizontal resolution of 500 pixels, a vertical
resolution of 250 pixels, a total of 125,000 pixels,
and 256 grey scales ranging from black to pure
white. To give an idea of the detail that such a
picture might provide, consider a standard
television picture. The British system uses 625
vertical lines, so the vertical resolution is 625
pixels. To get a similar resolution across the screen,
approximately 1,000 pixels would be needed

_ (because the screen is wider than it is high), and the
grey scale levels could be represented by the same
single byte to give 256 brightness levels. A robot
system with an equivalent resolution would give
an acceptable image for the computer to process.

SCANNING THE IMAGE
The processes that must be undertaken by the
robot ‘brain’ in order for this image to be ‘seen’
follow a set pattern. The first step involves
adjusting the grey scale levels so that adjacent
pixels with similar grey scale levels are “smoothed
out’ to the same level. The computer works over
the entire image area averaging levels so that any
small irregularities are removed. Once this is done,
the computer examines the image again, noting
any adjacent pixels that have markedly different
grey scale levels; these differences are then
emphasised. The idea behind this is that important
features in the image are probably marked by
boundaries, such as lines and edges, which will
show up as sudden changes in the grey scale level:
the computer takes note of these, emphasising
them to make sure that they stand out.

Once this has been done, the computer scans
the image again, searching for all the really large
changes in grey scale levels. It then uses these in
much the same way as a human would join the dots
in a puzzle to make up a picture. In most of these
puzzles, the human is aided by the fact that the
dots are numbered; the computer has no such help
and must simply follow what seems to be a likely
route. At the end of this process the robot will have
an internal picture of the scene before it in which it
has ‘smoothed’ the image out and drawn lines
around those objects that seem to be important.

But is this ‘seeing’? In fact, all the robot has
done is to carry out certain transformations of the
scene — in other words it still does not ‘know’ what
it is looking at.

There are two solutions to this problem. The
first is to program the robot with a set of rules that
are expressed as a set of simple statements about
the visual world. This is known as a ‘bottom-up’
approach to visual perception — so called because
the robot starts with very simple things and tries to
work out from them what it is seeing at a more
complex level of understanding. The second
approach is to program the robot with a set of

ne

objects that it is likely to see and then have it
examine the i image to see if any of these ‘obj ects are
present. This is known as the ‘top-down’
approach, so called because the robot begins with
a very complex, high-level idea about what it
might be seeing and then checks to see if its actual
visual input corresponds.

OBJECT RECOGNITION
To illustrate the difference between the two
methods, consider a robot that is looking at a table.
The bottom-up approach consists of analysing the
image and finding that it contains four vertical
parts and, near the top of them, a large horizontal
surface. ‘This corresponds to the pre-programmed
knowledge that a large surface could be resting on
four legs and that this structure is called a table.
The top-down approach would start with the
robot looking at the table and asking itself ‘is that a
table?’. It can ask itself this question because it has
an internal model of a table against which it checks
its visual input.

In general, the bottom-up approach enables the
robot to see things that it has never encountered,
and to understand something about them —
though to do this it requires a great deal of detailed
programming to give it the necessary basic rules
about the world that it will encounter. However,
the top-down approach allows the robot to
recognise only objects that it already has some
internal knowledge of — so anything new to it will
cause problems. —

Both methods are used by robot designers, and
sometimes a mixture of the two methods is
utilised. It seems likely that humans use similar
methods in their own visual perception, but we do
it automatically and are unaware of these
processes taking place.

But robot vision is, as yet, far from perfect.

There are several reasons for this. One of the most
important is the sheer amount of processing power
that is needed to process an image. Remember

_ that our example system had 125,000 pixels stored
as one byte each — over 122 Kbytes of memory
must thus be processed for each image. Although
we have simplified our description, many of the
processes that must be carried out on each pixel
are mathematically fairly complicated. If the robot
has to observe the world about it in ‘teal time’ (i.e.
it considers events as they happen), then 25
different images will be received every second (this
is also true of television cameras). This means that
the robot would need to process over 3,050
Kbytes of data each and every second — which is |
roughly equivalent to the contents of more than
one dozen floppy disks! | 7

To deal with the problem of processing, two
approaches may be considered. One is to develop
special-purpose hardware to perform the image-
processing (such hardware is now becoming
available). Alternatively, the image resolution and
number of grey scale levels may be reduced to
match existing hardware. This will result in the
image being processed more quickly, but the
picture quality will be poorer.

At present however, the subject of robot vision
is still not completely understood — any more than
the details of human sight are. Robots often make
mistakes when using a vision system. It may well
be that, ultimately, the only answer will be to
develop systems in which the robot ‘learns’ to see
things instead of being programmed in detail
about what it can and cannot see. And it may
eventually prove to be the case that a robot can
never ‘see’ things properly until a way has been
developed to give it a much greater knowledge of
the surrounding world — knowledge that is
comparable to our own, in fact. —

THE HOME COMPUTER ADVANCED COURSE 743

implement the var
on the Spe

iable replace program
ifferent must use a d

BBC and Commodore
we 9 ctrum

method from the

To

Se 2

w

© 2s

S
'
s
 =

=
=

©
E
S
 y

o
o
”

«=
=
—
e
v
o
e

WM"
d
B
c
o

= eo

oD

a

=| au SS

=

2

Ses

SS

6)

o>
= £. 0

S
i

&

o
w
e

C
e
s
c
g
é

VE w aan n? e

Si" gaa

=f
ee

S
E
S

e Qu

2ES» ScEas

S
o

ov
o

a

S
e
s
 2

g
a
g
e
s
g
e

~
~

~
~

o
Y

e
.
g

a
o
r

=
o)

b
e
a

B
a
s

B
e
e
8
e

Ro
<

e)

F

b
b

a
r

sa
ad

co
e

B
e

og
o

or
e

g
h

>

E
S

o
S

=

MD
M

C
A
D

B
S
E
 S
H
e
a
a
°
;

S
o

oe

p
o
e

e
e

P
S
 = |

o
r
o
y

e
e

R
e

@

B
a
:

A
g

=

=

o
e

&

~ &
 c
E

So
S

s
$
2
5
2
7

9

O
e

p
a

e
e
e

a

S
e
l
u
g
R
e
s
g
e

oO
o

2
.
0

S
p

&

i
e
e
e

a
o
e

Ses
oe

SS

S
o
a

o
e

o
f

Sh
ee

e
C
E
V
v
a
Y
L

S
t
a

28

h
e

: oO

L
a
S
S
E
D
S

S
E

\

oO

Ch
a

O
n

NR

f
o
S
e
c
s
s

as

q
o
f
s
s
e

Sy

-— ©

:
F
o

S
S

o
p

O

B
a
s
s
e

ae
es

B
O
S
S

S
H
Q
L
E
 B
e
t

y
4
e
r
s

:
0

E

-
G

A
o

=

B
h

Ou
,

B
a

2

O
Y

N o
O
o

D
o
H

A
S
B
L
E
R
E

SS
=
o

= 2

8
:

©
s
a

s
s

B
o
e

h
e

o
e

b
e

a
a
¢
g
s
s
s
%
e
s

o
d
m
p
a
e
f
t
e
e
s
e

e
a
e
t
O
Q
v
e

s
g

q

2
.

—
~

0
,
8

w
u

o
e

S
S

S
S
u
k
s

m
o
m

B
a
s

3
S
8
5

>

o
Y

e
G
@
d
g
o

R
a
v
E

H
S

T
S

B
i
e

P
o
k
s
e
e
n

S
S

S
e
e
5

Bb

2
2
o
g
e
e
c
e
s

S
S
a
c
s
E

H
M
A

:)

b

&
ES

DESTINATIONKS

744 THE HOME COMPUTER ADVANCED COURSE

the number of bytes specified by g, and updates | 3 ;
the pointers to the old and new programs. |

Variable names are copied by the code starting
at line 9500, and, if the variable name has been
changed, the two bytes at the beginning of the line’
that hold the length of the line are altered to reflect
the change in length. |

After the whole program has been altered and
copied to the new area, the BASIC program
calculates the values needed by the machine code
for copying back the altered program, and then
POKEs these values into the memory locations
where the machine code expects to find them.

If the new and old programs are the same
length, the new program can be copied into the
same space that is occupied by the old program. In ,
this case, the only information needed by the
machine code program is the program’s length.

If the new program is longer than the old
program, we have to make extra space in the
program area by moving up the variable replace
routine, which we want to keep. The extra space is
made by calling the ROM subroutine, MAKE-
ROOM, at address 1655 hex. When MAKE-ROOM is
called, the HL register pair must contain the
address after the place where space is to be made,
and the BC register pair must hold the length of the
space needed. The value required for HL is just the
final value of the variable Textpointer, and the value
for BC is the difference between the old and the
new lengths. ;

If the new program is shorter than the old, we
have to move the variable replace program down.
We can do this by using the ROM subroutine :
RECLAIM-1 at address 19E5 hex. When RECLAIM-1
is called, the HL register pair must hold the address
of the first byte to be left alone, and the DE register
pair must contain the address of the first byte to be
reclaimed. The value required for HL is again the
final value of the variable Textpointer, and the value
required for DE is calculated by subtracting the
difference between the old and new lengths from
Textpointer.

The altered program is copied back to the main
program area by the block move instruction LDIR
(LoaD with Increment and Repeat). The start
address of the altered program area is loaded into
HL, the start address of the main program area into
DE, the length of the altered program into BC, and
then the LDIR instruction moves the whole of the
altered program, byte to byte.

The last two lines in the Assembly language
program use another ROM routine, at address 8.
This is the ‘report’ routine that prints an error
message and other comments. The routine is
called by the RST 8 instruction, and the report
produced is specified by the byte following the RST
8 instruction. The value of the byte is one less than
the report number, so FF hex, or -1, gives the OK or
Program finished report; 0 gives NEXT without FOR,
and so on. The machine code program ends with
RST8, instead of the usual RET instruction, to avoid
returning to the Basic program that has been
moved.

THE HOME COMPUTER ADVANCED COURSE 745 es

746 THE HOME COMPUTER ADVANCED COURSE

SETTING.
THE TONE
In the last instalment of Workshop we
looked at the creation of digitally
synthesised sound using a_ digital-to-
analogue converter, and designed a machine
code program to generate three types of
waveform: square, saw-tooth and sine
waves. Now we look at two other important

The volume of a tone is determined by the range of
oscillation of the waveform generating the tone. In
other words, volume depends on the difference

_ between the maximum value of the waveform and
the minimum value. This property of a sound
wave is called the amplitude.

Using a simple Basic program to oscillate values
placed in the user port register we can demonstrate
how easily amplitude can be controlled in a digital
waveform.

1@ REM HEEK CRM BAS FREO/AMFPLITUDE ****

25 DDR=56579: DATREG=S6577

30 POKE DDR,255:REM ALL OUTFUT
40. FOR. 1=255 TO.@ STEF-15
50 FOR J=1 TO 100
60 FOKE DATREG,I:FOKE DATREG,@
7@ NEXT “IST

800 REM **** SAMPLE FROGRAM **#*

806 UFP#F=CHRE (145)
Q1@ DIVvV=49798: REM AMPLITUDE FACTOR LOCATION
870 DEL=49799: REM DELAY FACTOR LOCATION
S820 TME=4980@: REM DURATION FACTOR LOCATION
84@ CALL=49801:REM FROGRAM START. ADDRESS

R460 DDR=56577:FO0KEDDR,255:REM ALL OUTFUT

880 FRINTCHR#(147):REM CLEAR SCREEN
R90 PRINT: INFUT"AMPLITUDE FACTOR @-7'"3 AF
900 IF AF<@ OR AF>7 THEN PRINT UP#;UFS::GOTO89O
910 POKE DIV,AF

93@ PRINT: INFUT'’DELAY FACTOR 1-1@1"3 DF
940 IF DFti OR DF21@1 THEN FRINT UFS;UF #3; :GOTO9Z@
945 FOKE DEL,DF

9460 FRINT: INFUT"DURATION FACTOR @-15": TF
97@ IF TE“@ OR TF215 THEN FPRINTUPS: UPS: :GOTO960

98@ FORE TME,TF

1@@@ SYS CALL
101@ GETA#: IFA#="" THEN 1010
192@ IFA#="X" THEN 88@:REM RESTART

1920 GOTO 1Q0@@REM ANOTHER BEEF

At the start of the program a crude square wave is
generated that oscillates between 255 and 0. This
means that the amplitude of the wave is 255. As
the program runs, the upper value placed in the
data register is reduced in steps of 15. As the upper
value is decreased, so the amplitude decreases —
and the effect of this, when monitoring the sound
produced through a stereo amplifier or
headphones, is that the volume of the tone
gradually fades away to nothing. So the volume of
a digitally synthesised tone can be controlled by
limiting the range of values placed in the user port
data register. |

The pitch of a note is governed by the frequency
of the generating wave; that is the number of

Modular Construction difference between the

Waveforms can be modulated maximum and minimum values

either by frequency or by in a cycle. The diagrams show
amplitude. Frequency alters the
pitch of the tone heard and is
determined by the number of
waveform cycles output per
second. Amplitude alters the
volume of the tone and is the

how amplitude can be
modulated so that the tone
produced gradually decreases in
volume and how frequency can
be modulated to produce a tone
which rises in pitch

waveform cycles per second — the larger the
number of waveforms produced per unit time, the
higher the pitch of the note heard.

_ Frequency can be controlled digitally in two
main ways. The first is to increase frequency from
a bottom limit by taking fewer samples of the
waveform. If a wave were split into 100 samples,
for example, then a machine code program would
take a certain length of time to place each value in
succession into the data register, and so a certain
number of complete waveforms could be
produced per second. The number of samples
obviously governs the frequency of the tone heard.
To double the frequency, the machine code
program could, instead, take every second value
only from the data table defining the wave. The
frequency could be tripled by taking every third

value, and so on. There are two drawbacks to this

method. The first is that small frequency
adjustments are difficult to make without
distorting the shape of the wave. Secondly, as the
frequency of the wave increases, the wave
generated bears less and less relation to the
original wave shape as fewer samples are used.
An alternative method is start with a loop that

steps through the waveform data as fast as

possible, thus providing a maximum frequency.
Frequency can then be adjusted by inserting short
delays in the loop. This gives us much more
accurate control over the tone frequency, but
means that the number of samples making up the
waveform must be small if a reasonably high
maximum frequency is to be obtained. We shall
employ the second of these two methods to

—t

Ga

produce.a machine code program that will enable
us to control both frequency and volume.

The best method of reducing the waveform
amplitude, while retaining the overall shape of the

LIZ DIXON

wave, 1s to divide each value in the waveform table
by a.constant. This can be done in two ways: after
each value is loaded into the accumulator but
before the value is placed in the data register, or
prior to entering the main program loop. The first
method will increase the amount of time required
to execute each cycle of the main loop, and as this
factor limits the maximum frequency obtainable
we should opt for the second method. A second
table is produced from the original waveform table
by dividing each value taken from the original
table by a constant, then placing the result in the
new table. The new table is then used for
waveform data by the main program loop. The.
division method used is crude. An amplitude
constant dictates the number of times that the
table value is shifted right. As each shift right is
an integer division by two, the effect of using an
amplitude factor of ‘n’ is to divide each table by 2n.
A rather clever method is employed when the

amplitude factor is zero. In this case we use the
original table and the program modifies itself to
specify the base address of the original table,
rather than that of the table of divided values.

Execution of the main loop of the program can
be delayed by inserting a small piece of code that
does nothing except take time to execute.
Normally this is done by decrementing either an
eight-bit number in one of the index registers, or a
16-bit number in memory, from a set delay value
to zero. We find that if we calculate the maximum
delays produced by these two methods,
decrementing an eight-bit number will provide
sufficient delay.
~The main problem is not providing enough

delay —— Le. proaiewie the lowest frequency — but

providing the minimum delay; in other words,
producing the maximum frequency. On page 732
we used a waveform divided into 80 steps. The
extra code required for the delay slows down
execution time so much that it is no longer
practical to have this number of steps. The code
mse up Bee main meee is shown Bee

The total number of machine cycles required is
given by: 2+(4+-4+(2+3)xdelay— 1+4+2+2+3)

_X steps -1 = 1+ (18+5xdelay) X steps: and a
minimum delay value of 1 yields the maximum
frequency as follows: max freq = 1000000=
(1+23xsteps).

For a maximum frequency of around 3, 000 Hz,
this formula gives the number of steps as 15 . This is
the number of samples of the waveform we should
use to produce a reasonable maximum frequency.

- Using 15 steps, the original formula can be written
as: no of machine cycles = 271+-75 Xdelay.

If we require a minimum frequency of, say, 128
Hz (about two octaves below middle C) then the.
delay value will be 101. This value can be held and
decremented by an index register.

The final problem produced by an Aes
frequency is that, for a set number of repeats of the
loop delay, given the duration of the tone produced
will decrease as the frequency increases. This is
because as the frequency increases, the main loop
takes less time to execute. To balance this we must

Stretching The Snake |

The frequency of a digitally
Sampled wave can be altered by
taking fewer samples or by
inserting a delay between each
sample value. If the original
look-up table for the wave
contains 15 samples of the
wave, then the frequency of the
Output wave can be doubled by -
taking every other sample only.
Alternatively all 15 values can be
Output inserting a delay to
double the time taken to output
the entire wave, halving the
frequency. The first method
allows many samples to be
used at lower frequencies but
affords only crude frequency
control. The second method
allows much finer frequency
control but means that fewer
samples must be used

THE HOME COMPUTER ADVANCED COURSE 747

include a calculation that will set the number of
repeats required to produce a tone for a set
duration, no matter what the frequency of the
tones. If we make the unit of duration 1/50th of a
second then the number of repeats for a given
delay value is: 1000000+(50X(271+75 xdelay).
To calculate this in machine code would be
difficult and slow so instead we can set up a look-

Peers

ee ees

ee : oe

Mana CRM a4 bees

st FREQUENCY f+
fee AND AMPL i Ube =

ct GENERATION ++
PER oot:

fee eee

$e e eee eee tee

= io sO. OF GIEPS ~ER Weve UCyULe

PORE = 260

x= $0 2

up table from BASIC, giving a value from the above | Gjaers: sexeaters [WAVE GHAPE TABLE
1 BMPIOH £24 SIEPS APPL ILIUDE TABLE formula for each value of delay (1.¢. from1to109). (77 Ueeee DeLay tea e

The machine code routine then simply hastolook (@UNT *=*+: ‘“;LOOF COUNTER
oes DIVIGN €eee) DIV OF WAVE FAcioR

up the repeat value and storeitinadecrementer,to DeLay *=*+1 _;DELAY FACTOR RS
: TIME eee tl] NOTE DURATION Fel lUR

produce a tone lasting for 1/50th of a second. : :
: ; Gel empl Liupe 1A

Commodore owners with an assembler can {| —_— |
type in the source code listing and assemble it to oe cone [eeOe Se ara ane 7a

produce an object program that can be saved. The ee ee cee 1075. freq '
: : ; _ ; - . 1102 LEY gi :

calling program will load back the object program JME INITE iiie ENE cone
from disk or cassette and set up the look-up tables. cant ‘ge ee

Pa ‘ LDA # ANP 14e ian —
Type this in and run it. Type NEW and enter the ETA NEXVAL+1 on _—
sample BASIC program that gives the various ey; ——,rlr————“EE

=i ' i S ampli tice tale oes

location addresses used by the machine code a ae 1180 ST nexval ‘1
° ° : : ‘ . Sl eoe

program. RUN this program with the buffer box [= . 1195.next
eee P20 LOY giv facta

and D/A converter set up as shown on page 732. ROR A te10 LDA shape (able,)
° SiR AMP iA. x oon :

If you do not have an assembler, then type in and be hl
run this Basic loader before running the calling — —
program. If you use the Basic loader then lines45 — > DEY

t agate 6 j : 1270 BNE more

and 50 of the calling program can be omitted. a. 1288 DEX
° : i 1290 BEL as

BBC owners can simply type in the BBC We 1202 -
. é or f x : SE FE *

version as written and RUN. LDA #500 rr
’ 3 oe _ eS TERE plate eee Mme tele, Oey hea eo mie COU pike SUNT Hilby ib 238 ini 19 REM BASIC LOADER FOR FREG/AMP PROGRAM a Lr™~w~™”—~—~C~—~*~CS:*”*zt‘(< Css ee

2 ae LOA LOUR TE. s 1358 {Dm Ho

30 FOR I=498@1 TO 49914 oo
we SEOEE REO NOPUL 1472 LOX Ggelay factor

its Beat i bales oe MULT 1388 LDA loop table, «

afi Sipe i fi Aa 1590 LDY fine feector

6@ NEXT I ROL COUNT +I 1400 BECO pomule

7Q@ READ CS:IF CC<=CS THENFRINT ae Ll
"CHECKSUM ERROR: STOF NOMULT : 1450 ——

1@@ DATA172,124,194, 208,8,169,0,141 STA COUNT 1442 DEV
wy, : “a : 1450 BNE @ult

114 DATAL@4, 194,76,1 74 5 1974, 1 OF 4 As 141 bt44) MAIN PROGRAM LODP 444+ 1460. nomi &

120 DATAZO4,194,162,15,172,134,194,189 :; 1470 _.
1=@ DATAQ,194,24,106,157,15,194,136 -— 1480.
140 DATA2Z@8, 248, 202,16,239,128,169,2 . ~~ ——rrrr”t”~—~r—C‘<‘COW
150 DATA1L41,1335,194,174,135,194,189, 30 LDA AMP TAR, x sia
160 DATA194,172,13546,194,248,7,10,46 voor neuey tant LD #@

= os ay = wy EL SOREL Ay | Too peal
17@ DATAIS3., ae. UES aig ea tk BR phe DEY 1640 LDA spl i bude table ©

180° DATALI4 ,162,80,189,15,194,172,12335 PRE MORDEL ios LDY delay factor

190 DATAI94, 136,208, 253,141,1,221,232 . 1560. mordel
200 DATAZE4, 15,208, 229,173,132,194,54 i oo Oe eee
PUP OATAr Ss. 1411 se, (act Foci 33,5194 CEX ¥OTERs 1590.
220 DATATZ=,9,141,123,194, 208,218,149 BNE NEXVaL 1600 BIA port
“ye IAS 4 EO ™ ; ; ins
ao DATAQ, <@5 , ete 3 174 3 208 ,211,08,96 $444 DECRENENT COUNT +te4 16.0 CPX #elepe

LDe COUNT Today

EN CEE TER. ARe Se DE CREMENT COUNT «xk x :

[@ REM #*8e* CALLING PROGRAM ###+* _.. oe 4

2, REM. 4 eee AND al LDA COUNT+1 ae co
SO REM Sees TABLE SET “UP HHH BEC #200 lee hUe }
Ais oln COUNT | 1706 SiO eoue

45 DN=@:REM IF CASSETTE DN=1 Lbe #500 1728 Sec #0 7
SQ IF A=@ THEN A=1:LOAD"FREG.HEX",DN,1 CMP COUNT i730 676 count i ir
Beye ; BME MATA tea Be main

7O HEM: #2366 05E7. UE. SHARPE TABLE. #2 "+ 1760 che count
ae orate Phe meh

QQ S=15: TH 12*4096+2"256 i — BO G=151 TH+ 12e4896+2*25
7 FOR T=@, Td S-1 1500)

1AQ~V¥A=1L27*S EN CX) F127 1S1@NEX 1) cet.

TiO PORE Teel yy
oo

L2@ X=xX+2/5 2ooener PROLcet tables

1=@ NEXT I oe
140 : SOI UR [ehaoe table § chiabe —sbleretene |

eUloOye le ks es

150 REM **** SET UP FREQ@/DELAY TABLE ¥*#« ae
164 : SOA = eer i ates

170 FRE TR ees
a i

18@ FOR D=@ TO 101 2070FOR delay=@ 10 101
190 TV=1@"6/ (S0*% (271+75"D)) BPM@e@l oop vel =16° 4/7 (50e(071 7 5%del ay)

2aa FORETE+D : cy ea) pop fap) Poel a, loop val

—1@ NEXT D
PIMENEA! delay
et OE NDP ROC

748 THE HOME COMPUTER ADVANCED COURSE

The BBC Micro offers u users a a wide range of
graphic modes, enabling complex pictures
to be built up onscreen. Numerous graphic
ROMs are also available, and now the EVI
Video System allows an onscreen image to
be produced by simply pointing a camera at
the desired object.

The EVI Video system — ha ieee as Sap. -
is priced to fall well within the budget of a home
computer user. Complete with software, it costs
only £130 — less than half the price of any
comparable video interface. The Snap system

consists of a small electronic camera that is
connected by a ribbon cable to the BBC’s user
port, together with software on either cassette or
disk: With this system you can transfer the image
of any object or scene onto your computer’s screen
simply by issuing the correct command. You can
use Snap just for fun, but more serious
applications are possible — the system could form —
the basis of an ‘intelligent’ burglar alarm, or could
be used for image recognition, perhaps even
giving ‘sight’ to a robot.

Snap works by virtue of a quirk of electronics.
Inside the camera, behind the lens, is a 32 Kbyte
RAM memory chip. Unlike normal chips, this has

_ been manufactured with a transparent window in
the top surface of the chip. The image from the
lens is focused onto the surface of the silicon wafer
that makes up the chip, on which there is an array
of 256 by 128 tiny memory cells. These cells, like
those in any other chip, have a property that is
usually ‘invisible’ to the user. When a cell is
exposed to light it slowly loses its stored charge,
and the rate at which it discharges is proportional

_ to the intensity of the light falling on it. In the Snap
camera all the cells are first fully charged by writing
a specific value to all memory locations, thus
turning each one ‘on’. After a short period, any
cells receiving light slowly discharge. After a
pause, all cells are re-read to ascertain the value in
each. Those that have received no light will still
have the same ‘on’ value, while those in the path of
sufficient light will have discharged, changing their
stored value, and so will be read as ‘off’. The
system software plots a lit point on the screen ina .
position that corresponds to each ‘off’ cell in the
memory array. In this way, a reproduction of the
image on the chip is transferred to the BBC screen.

The time period between the computer writing
all the memory cells to ‘on’ and then reading them
again determines the ‘exposure’ of the picture. The
Snap camera is capable of producing many
pictures each second if the lighting is bright

enough; in normal room lighting you can take a
picture in under a second.

The picture resolution is limited by the 256 by
128 array of memory cells on the camera chip.
This is not particularly high — it is about the same
as a Mode 2 or Mode 5 BBC screen — but it givesa
very reasonable picture quality, comparable to a
newspaper photograph. A more important
restriction on quality is not the resolution but the
result of another feature of the memory chip. The
array of cells is, in fact, split into two separate
segments on the chip surface. A gap between these
two blocks means that a strip across the centre of
the image is not detected by the camera, and the
resultant screen image thus has a small missing
section. Surprisingly, this is not too serious and on
many pictures is entirely unnoticeable.

The Snap camera itself is encased in a small
plastic box about the size of a cigarette pack. At the
front is the lens and on the base is a standard

EV1 Moving Pictures
The software with the Snap
camera is called EV1. It
continuously displays on the
screen what the camera ‘sees’. It
also allows pictures to be
dumped to a printer, frozen on
screen, or saved to disk. The

| computer finds what it
, estimates as an appropriate
| exposure setting, although this
| can be changed manually by
| pressing the up and down

= arrow keys

VAN McKINNELL

THE HOME COMPUTER ADVANCED COURSE 749

 HARDWARE/SNAP CAMERA

So

camera tripod mounting, enabling the unit to be
steadied when long exposures are needed. Two
metres of eight-way ribbon cable connect the unit
to the BBC user port. This is all the hardware that
is needed, so the system is extremely easy to set up.
The camera uses a lens from the small Pentax

110 single lens reflex camera, fitted in a standard
bayonet mounting. Such lenses are readily
available from camera shops and are supplied in a
wide variety of focal lengths — even zoom lenses
may be fitted — so a different lens may be
substituted for the one supplied. The only
problem with this arrangement is that the lens in
the Snap system is set at a different distance from
the chip than it would be, on the Pentax camera,
from the film. Thus the focusing distance marks on
the lens have no meaning when used on the Snap
system. Since focusing the Snap camera can be a
time-consuming task, it would be worth the effort
involved in recalibrating these marks.

The screen image produced by the camera is
largely dependent on the software. A suite of
programs is supplied with the system, and a 50-

_ page instruction manual (prepared very
professionally on an Apple Macintosh) explains
software use and the camera’s working details.

The camera may be used in two different ways.
Pictures may be produced from a single image,
resulting in a ‘two-tone’ screen display, or a ‘multi- -
tone’ image may be built up by taking several
pictures at different exposures. The first method is
used by the first program in the supplied software;
this uses a small section of a Mode 4 screen to
present a constantly updated picture. The
exposure is adjusted by using two of the cursor
keys. This program also includes a screen dump

routine that is suitable for Epson, or Epson-
compatible, printers.

The second program allows more realistic
pictures to be constructed in several tones. Eight
separate pictures are taken at different exposur

image containing
brightness, fr

age
hardly a ‘snap’.

The ‘Secure’ program ine your snap system
into a computerised burglar alarm. The software
takes note of only the differences between
successive image yu can Set it to give an alarm
signal when these differences rise above a certain
level. For example, if the camera was pointed at

our house it would ignore trees
e wind but would trigger the alarm if a

ived at the front door.
ovie’ stores a short sequence of two-tone

ames, which are then replayed quickly, giving the
effect of animation. Also supplied is a program
called ‘Animal’. This is a video version of the
familiar computer game (see page 252). To play

750 THE HOME COMPUTER ADVANCED COURSE

This cable connects the Bian
camera to the user port ofthe —
BBC Micro

Camera Body.

Focusing Ring

Lens
The Snap camera is fitted with
an 18 mm wide angle F2.8 lens,
or a standard 24 mm lens

you present the system with a picture
ontaining several objects. The program analyses

the image, taking note of the outlines of all the
separate objects it can ‘see’ and then invites you to
name each one. If you then point the camera at
another picture or scene it will attempt to identify
any of the objects that also appeared in the first
picture.

Perhaps the most attractive option for home
users is the program called ‘Arty’. This is used to
produce complex screen pictures from different
images. The whole Mode 1 screen is used, and
images captured by the camera can be positioned
anywhere on the screen, magnified or reduced in
size, by using a joystick. Foreground and
background colours can be changed by using the
function keys. A degree of patience is needed to
make the most of this program, but complicated
full-colour screens can be constructed from a

variety of real-life objects.
Although the software provided is complex and

well thought out, it covers a limited range of
applications. The grey-scale picture program, for
example, may be used in Mode 0 only. An option
to use Mode 2, using the different colours
available in that mode as grey tones, would have
been more useful. A large amount of information
about the machine code routines used by the
software is provided in the manual, but to make

Optical RAM
The photosensitive medium in
the Snap camera is a dynamic
RAM chip with the cover
removed. Light striking the
surface turns individual bits on
or off

J Controller Chips

s 7 Circuit Board

use of this a reasonable knowledge of machine
code is needed. The BAsic-only user is restricted to
the software provided. It would have been
preferable to have some all-purpose machine code
modules that the user could string together to meet
any particular requirements. However, this would
no doubt have detracted from the most attractive
feature of the Snap system — its price.

‘SNAP/EV1 VIDEO
‘Price: £130 |
Dimensions: 70 mm x
90 mm x 25 mm

Lenses: 24 mm or 18
mm lens
Interfaces: 20-way —

connector
Manuals: Snap camera
user guide |
Advantages:

Enables users to save
pictures either to
screen or to disk

Disadvantages: [he
resolution is poor,
which sometimes ©

makes controlling the

camera difficult

Vertical Resolution

Pictures generated by the Snap
camera are formed entirely from
vertical lines, with gaps to show
variations in brightness. The
resolution of the images is
acceptable, but far from
Outstanding, even considering
the £130 price

Lighter Shades Of Pale
Snap camera pictures are
normally displayed in two
colours, black and white. A
grey-scale program called ‘Grey’
lets you display a picture over
the whole screen in eight levels.
of brightness. The increased
ability to show contrasts in
shading improves the realism of
the displayed image

THE HOME COMPUTER ADVANCED COURSE 751

MAKING PLANS
Despite many basic similarities of design,
financial modelling packages each have
their .own individual characteristics and
idiosyncrasies. This is certainly true of
Graph Plan, a combined spreadsheet and
graphics package, which is available for the
BBC Model B equipped with the Z80
second processor.

Unlike the other packages that's we have Raoked a at
in this series, Graph Plan is a disk-based program.
Acorn gives the package away, as part of a bundle
of free software, to purchasers of the Z80 second
processor. Like all the programs in that bundle,
Graph Plan is a very useful and reliable package.

The program doesn’t have quite as much ‘style’
as Psion’s Abacus, the spreadsheet/graphics
package that Sinclair QL users receive free of
charge (see page 724). But it does have the
enormous advantage over Abacus of the fast
access and storage speeds that proper disk-based
software enjoys (the OL Microdrives are adequate
if you are used to cassette-based software, but
frustratingly slow if you have ever used a proper
disk drive). Since Graph Plan is a ‘giveaway’
package, it is sure to enjoy great popularity —
although not as much as Abacus, perhaps, since
the combined price of the Z80 processor plus
Acorn disk drives is a lot higher than al of the

- Sinclair OL.
In this article, we will concentrate our attention

on the graphics side of financial modelling. Graph
Plan, as the name suggests, has a very extensive
graphics capability, as well as a formidable array of
built-in commercial and mathematical formulae.

What gives Graph Plan its unusual style is its
idiosyncratic way of communicating by numbers;
all user interaction with the program is via 144
numbered commands. Upon loading, the
program has a standard spreadsheet display —
divided into rows and columns — filling most of
the screen. Down the right-hand side of the screen
the 20 basic commands with their corresponding
numbers are displayed. The user selects a
command and keys in the number at the ENTER
COMMAND prompt on the third status line above
the display.

Although it is simple enough to select a
command — either from the menu on the screen or
from the complete list of commands in the
excellent 124—page Graph Plan manual — there
are obvious disadvantages to this way of doing
things. Most modelling packages, particularly the ©
highly successful ones like the Lotus 1-2-3 (see

_ page 644), require you to input the initial letter ofa

459 THE HOME COMPUTER ADVANCED COURSE

command only (or to select it from a display with
the cursor control arrows).

Sophisticated modelling packages, like Lotus
1-2-3, display explanations of what each
command’s function is. Graph Plan, on the other
hand, expects you to understand the function of all
of its commands. However, the program does
provide the facility for the command list on the
right of the screen to be altered to display ©
corresponding lists of commands. If, for example,
you select command number 2 data, the command
menu changes to display commands 29 to 48 (the
data entry and data manipulation commands).
There is also a HELP facility (command number 7)
that can give an explinaeien of a given command's
function.

In addition to the system of numbered
commands, Graph Plan has other unique features.
Most spreadsheets, for example, are based around .
the concept of the ‘cell’ — an intersection between
a row and a column. Graph Plan treats rows and
columns as separate entities, and the ‘data pointer’
(the second status line on the display) is a cursor
indicator that, in addition to displaying the
identity of the current cursor square, shows
whether you are in row or column mode.

This distinction would be meaningless in a
system where the unique cell address is the central
reference point but it is extremely important in
Graph Plan, because graphs have to be drawn up
with reference to either rows or columns, but not
both. In order to tell the package whether you
want to generate a row-based graph or a column-
based graph, you have to set the appropriate mode
by changing the data pointer. This is done using

_ the arrow keys to move the cursor onto the
heading of either a row or a column, which
automatically specifies the mode.

A SIMPLE MODEL
As an illustration of the package’s graph depeite
technique, let’s consider a simple model. This has
five columns, headed ‘January’ to ‘May’

_ respectively, and five rows, headed ‘Sales’, ‘Cost of
Sales’, “Gross Profit’ ‘Overheads’ and ‘Net Profit’.
In a model like this, a row-based graph will have a
different meaning from a column-based graph.
For example, we could generate a very simple
row-based bar graph for the sales turnover figures
for January through to May. |

The graph would display the column titles ©
(January’ to ‘May’) along the x-axis, and the bars
would represent the values given in row one of the
model. Alternatively, by adjusting the data pointer
to column mode, we could generate a very
different bar graph. This would display the row

nahh binonaitenashccicnstiatireitat pannsnnnrnanananaton sg oe ee .

titles (‘Sales’, ‘Cost of Sales’, etc.) along the x-axis, OPTIONS. The manual displays a very good
with the bars representing the values given in ‘decision chart’, which clearly illustrates the
column one (‘January’) of the model. selection process you have to go through when

Given the appropriate data, Graph Plan can using this command. Command 63 presents you
instantly produce a considerable number of witha six-option menu screen: Display Chart, Define
different graphs from the data given in this model. Chart Options, Define Axes Options, Define Pie Options,
All of these graphs can be seen, in turn, on the — Print Chart and Plot Chart. Furthermore, the Graph
screen, with no further intervention from the user. Plan manual has a special appendix, called a — Aa
Graph Plan allows this to be done using the ‘Guide through the graphics sub-menus’, which is
graphics command 62 SELECT. Entering 62 at the
ENTER COMMAND prompt brings up a further

Spreadsheet Display

Graph Plan differs from other
spreadsheets in two ways. The
first is the menu of numbered
commands on the right of the
screen. The second is the ability
to take data from the
spreadsheet and present it in
graphic form. Graph Plan can
display data from a row or from
acolumn, in any of three -
formats, as shown

IAN McKINNELL

compulsory reading for the novice user. This
succinctly lays out how you can add titles to a
graph, select the shading or colour of bar graphs,

| and enable all sorts of scaling variations (even
prompt on status line three. If you are in ‘row down to making the axes logarithmic rather than
mode’, for example, you will be asked to give the __ linear). |
number of the row of data that you want graphed. A good graphics facility built into a spreadsheet
As soon as you select arow, the prompt changesto (that itself has mathematical and _ statistical
ask which type of graph you want: ‘Choose (Bar=1, | functions) makes Graph Plan suitable for a wide
Line=2, Pie=3)’. You can then view the graph range of relatively simple scientific and
immediately by selecting command 61 DISPLAY. engineering applications. The package provides
And you can change from bar graphs to line or pie an excellent means of presenting data, either for
graphs at will. reports or lectures, and will, therefore, appeal to

If you want more flexibility in the layout and _ technicians and scientists as well as to commercial
design of a graph, you can use command 63 _ users.

THE HOME COMPUTER ADVANCED COURSE 753

POETRY IN MOTION
In this article in our LOGO Series, we turn our
attention to list processing, which is central
to the way the language works. We also take
another look at recursion (and revisit the
psychoanalyst) before using LoGo to write a
little roet :

A list is a collection of obj ects in order, ee iS
identified in Loco by using square brackets; so that
[CEYLON MADRAS VINDALOO] is a list. We have
encountered lists several times in this series. In
fact, we can’t escape from them in LoGo, because
the language is based on lists. We've already seen
how a definition for a square — REPEAT 4 [FD 50 RT
90] — has a list of instructions (within the square
brackets) as its second input. Similarly, MAKE “INP
REQUEST assigns to INP a list consisting of the input
from the keyboard. —

Lists can be assigned to global variables — for
example, MAKE “CURRY [CEYLON MADRAS
VINDALOO]. The command PRINT :CURRY prints the
list without the square brackets: that is, CEYLON
MADRAS VINDALOO.

A.LoGo object can be a number, a word or a list;
and a list is defined as simply a collection of
objects. This is, of course, a recursive definition; a
list can contain another list, or a list of lists, and so
on. [[CHICKEN TIKKA] NAN SALAD] i is a valid list, with
a list as its first element ([CHICKEN TIKKA]).
Recursive procedures are often needed to process
lists, precisely because lists are recursive objects.

The majority of our programming in LOGo has
until now been concerned with one number orone-

word at a time. When we want to process groups of
objects at the same time, we need to organise these
simple objects into a single unit. Loco takes the list

- asitsbasic method of grouping simple objects. ‘The
list is chosen because it is extremely versatile —
you can construct any complex data organisation
by starting from a list.

The two fundamental list operations are FIRST
and BUTFIRST. FIRST [CEYLON MADRAS VINDALOO]
outputs CEYLON — that is, it gives us the first
element of the list. BUTFIRST [CEYLON MADRAS

VINDALOO] outputs MADRAS VINDALOO; in other
words, it gives us the list without its first element.

Here’s a procedure that prints the elements of
the list, one below the other:

TO PRINTOUT :LIST
PRINT FIRST:LIST
PRINTOUT BUTFIRST :LIST

END

So PRINTOUT [CEYLON MADRAS VINDALOO] gives:

754 THE HOME COMPUTER ADVANCED COURSE

CEYLON.
MADRAS
VINDALOO

The first command prints the first element of the
list and then passes the task of printing the rest of
the input list to another copy of PRINTOUT. When
you run this procedure you'll get an error message
when it runs out of data. Here’s a more elegant way _
of finishing:

TO PRINTOUT :LIST
IF EMPTY? :LIST THEN STOP. -
PRINT FIRST:LIST
PRINTOUT BUTFIRST :LIST -

END

EMPTY? checks to see if its input is the “empty list’
—[]. Some MIT versions do not have the primitive _
EMPTY?, but you can always define it as follows:

TO EMPTY? :LIST
IF :LIST = [] THEN OUTPUT “TRUE
OUTPUT “FALSE

END

Similar to FIRST and BUTFIRST are LAST and
BUTLAST. LAST [CEYLON MADRAS VINDALOO]
outputs VINDALOO, and BUTLAST [CEYLON MADRAS
VINDALOO] outputs CEYLON MADRAS.

BABBLING
For our first exploration i in list processing, we'll try
to mimic some random babblings on the
psychoanalyst’s couch. First we'll assign all the
words we know to the variable WORDS:

MAKE “WORDS [MOTHER FATHER SEX MURDER
JEALOUSY FIRESEADEATHDREAM] —T

We want to produce a constant random stream of
these words, for experience has shown us that
these are the words that are always successful in

attracting our psychoanalyst’s attention. To get a
random element of the list we need to select a
_random number, n, between one and the length of
the list (nine in this case) and then select the nth
element of the list. |

TO NTH :NO LIST
IF :N =1 THEN OUTPUT FIRST: LIST
OUTPUT NTH :NO - 1 BUTFIRST LIST

END .

-Let’s use this pucelines with a few exuples to see
how it works. Say you type NTH 1 :WORDS. The
condition in the first line is true, so the procedure
outputs FIRST :WORDS, which in our example is
MOTHER. |

Try NTH 2 :WORDS — now the condition is false

nme Pano

so the procedure outputs NTH 1 BUTFIRST : WORDS.
This ignores the first list element and takes the first
word from the remainder of the list — FATHER.

So our procedure to print a random word from
our limited vocabulary would be:

TO GETRANDOM :LIST | 3
OUTPUT NTH ((RANDOM 9) +1) :LIST

END

To use this, type GETRANDOM :WORDS.
Our procedure is restricted to lists of nine items.

We could improve on this if we could determine
how many items there are in a given list. Here is a
procedure that does this:

TO LENGTH :LIST
IF EMPTY? :LIST THEN OUTPUT 0
OUTPUT 1 + LENGTH BUTFIRST :LIST

END

To see how this works try: LENGTH [SCIENCE
FICTION]. As the list contains some words the first
condition fails, so the procedure outputs 1 +
LENGTH [FICTION]. Now LENGTH [FICTION] outputs 1
-+LENGTH []. On calling LENGTH with an input of [],
the condition in line 1 is true, so the procedure
outputs 0. Now LENGTH [FICTION] outputs 0+ 1 =1
and, finally, LENGTH [SCIENCE FICTION] outputs 1 +1
= 2. So a more general procedure for getting
random words from a list of any length is:

TO GETRANDOM :LIST
OUTPUT NTH ((RANDOM LENGTH :LIST) +1)
-LIST

END

| In many versions of Loco there is a primitive, | TEM ;
which does precisely what NTH does, and a
primitive called COUNT that does the same as
LENGTH. Using these we can rewrite the procedure:

TO GETRANDOM :LIST
OUTPUT ITEM ((RANDOM COUNT :LIST) + 1)
:LIST ee ae

END

To print a selection of 10 comments to keep your
psychoanalyst listening attentively, simply type:

REPEAT 10 [PRINT GETRANDOM :WORDS]

There is a pattern to these list processing
programs that was shared by many of our recursive
turtle graphics procedures. The pattern is:

e If the task to be performed is extremely simple
then do it and stop. | |
© Otherwise do a small part of the task.
e Then pass the rest of the task onto another
procedure (often a copy of the original
procedure).

This is a highly successful strategy, which we will
encounter repeatedly in list processing programs.
Compare this polygon drawing program:

TO POLY :N
IF :N =0 THEN STOP
FD 30 RT (360/:N)
POLY :N—1

END

with the version of PRINTOUT given earlier. The
structure of the two procedures is identical.

RANDOM POETRY
Having failed to impress our psychoanalyst, we
now turn our hand to poetry. Here, we will want to
produce whole sentences rather than single words.

TO POEM1 :LENGTH
IF :LENGTH = 0 THEN PRINT “STOP.
(PRINT1 “’’ GETRANDOM :WORDS)
POEM1.:LENGTH - 1

END

PRINT1 “’ ’ is included to print a space between
words. To use this procedure, type POEM1 6 for a
six-word sentence.

It would be useful to be able to extend our

Abbreviations
BUTFIRST BF

BUTLAST BL

SENTENCE SE

THE HOME COMPUTER ADVANCED COURSE 755

original list of words without having to go to the
trouble of writing it all out again. One way of.

_ extending a list is to use the operation SENTENCE,
which takes two inputs and makes a list from them.
So SENTENCE “JAM [HONEY JAR] outputs [JAM
HONEY JAR]. : |

TO ADDWORDS1:LIST -
MAKE “WORDS SENTENCE :LIST :WORDS

END |

~ So we can now extend WORDS with ADDWORDS
[ANXIETY REPRESSION [FEAR OF FLYING]]. The
problem with this is if the variable WORDS has not
previously been assigned a value. The primitive

_ THING? is used to overcome this by testing if a
variable has been assigned a value; it outputs true
if its input has a value associated with it. We can
now improve our list of extra words with
ADDWORDS1:

TO ADDWORDS1 :LIST
IF NOT THING? “WORDS THEN MAKE “WORDS []
MAKE “WORDS SENTENCE :LIST : WORDS

END 7 |
Using a different list of words, we obtained the
following piece of ‘poetry’ using this procedure:

APPARITION LOUDLY SPOKE SPLENDID
PARANOID PLANET TERRIFIED THE WITH GREEN
APPARITION FLOATING PARANOID ROBOT MAN
FLEW SPOKE FLOATING LOUDLY

One of the more obvious failings of our
computerised poetry is its total disregard for

English grammar. The poems might make more
sense if we could constrain them to some simple
syntactical patterns — such as: noun, verb, noun.
One way to do this is to have a number of lists, one
for each part of speech. We could then choose one |
word from each list according to our desired
sentence structure. |

We leave this problem for you to explore and
investigate. In the next instalment of the course,
we will show you some ways of how to improve the
turtle’s poetry-writing abilities. _ |

756 THE HOME COMPUTER ADVANCED COURSE

HERTZ oe | :
Named after scientist Heinrich Hertz (1857-94) |
the hertz is a unit of measurement for frequency.
When a repetitive event recurs once every second,
it has a frequency of one hertz. This measurement
is applied to sound generation, as in the frequency
of a tone; in electronics, when an electrical pulse is
repeated; and in video scanning, where the hertz
value refers to the frequency with which lines of
resolution are traced by a beam of light.

- The abbreviation for hertz is Hz; kilohertz, or
kHz, which stands for thousands of cycles per
second; and megahertz, or MHz, for millions of
cycles per second. |

HEURISTIC
A heuristic system is one that relies on a self-
learning, or trial and error, approach to problem-
solving. This is only one of two basic ways of
solving problems. The other method involves
creating a system that applies a specific set of rules
or instructions, using existing knowledge of the
nature of the problem. For example, solving
simple equations for an unknown value is
accomplished by following a specific set of
mathematical operations on the equation. The set
of instructions or operations needed to solve the
problem is called an algorithm. When an
algorithm is known, or can be determined by
synthesising known data into an_ original
approach, the system is said to be ‘non-heuristic’.
A heuristic system, on the other hand, is one

that follows a specific course of action up to a
point, but then proceeds to ‘learn’ the best way of
finding a solution. This is usually done through
trial and error, via some form of feedback system.
Heuristic techniques are employed when a
decision is required for which the computer has no
clear-cut procedure to enable it to make a choice.
One example of a heuristic system is the
micromouse (see page 721), designed to explore
and solve a maze that it has never experienced
before. The programmer of a micromouse can
give it some very specific instructions, but the
mouse must rely on feedback from its sensors to
‘learn’ the structure of the maze.

Algorithms can be applied to the search at
many points along the way. For instance, the
mouse has an internal definition for a blank wall,
and a set of instructions telling it what to do when
one is found — but the mouse must rely on
information from its sensors to know that a wall
has been found. By trial and error, the mouse finds
its way to the end of the maze, learning the
optimum path along the way.

Self-learning, or ‘heuristic, methods of
problem-solving are crucial in human intellectual
development. In computers, they form a
commerstone of artificial intelligence.

HEXADECIMAL
Hexadecimal notation is a system of representing
numerical values using base 16 — as opposed to

binary numbers, which are base 2, and decimal
numbers, which are base 10. In hexadecimal
notation, the digits 0 to 9 are followed by the
letters A to F, so that values from 0 to 15 can be
represented by a single digit. _

Hexadecimal notation is widely used in
Assembly language code because it requires much
less space than the equivalent binary value. For
example, the value 255 requires three digits in
decimal notation. Its binary equivalent, 11111111,
requires eight digits, but the hexadecimal form,
FF, requires only two. 3 ‘

Some microcomputer systems incorporate a 7~
hex-pad to simplify entering hexadecimal
numbers. The pad consists of 16 keys, which are |‘
labelled 0 to 9 and A toF |

HIERARCHICAL
COMMUNICATIONS SYSTEM |
A communications network divided into levels of
responsibility is called a hierarchical
communications system. The lowest levels of the
network have the most specific function, while
each successive level above has a more general
responsibility, and relies on the information
processed at the levels below it. Perhaps the best
way to examine this is to consider how a
communications systems works within the
operational structure of a large corporation, with
offices in several locations.

Each regional office has a department whose
primary purpose is to process incoming orders”
from locations within its area. Each order
department will have its own local area network to
process the data, and the department manager will
be in charge of the central supervising system for
that department. This supervising ‘node’ is then
connected, via a longer-distance network, with the —
controlling nodes of the other order departments.
The company’s order manager at head office then
has immediate access to data from all the separate
regions. This system is, in turn, in communication

with those of other central office managers.
In a hierarchical file system, there are several

levels of files, each lower level dependent on, and
related to, the next higher level. A document is
stored in a file, which is a subheading of a larger
file, and so on. In this system a point is reached
where a single umbrella file stores all the units.

HI-RES GRAPHICS Be
Hi-res, short for high resolution, simply mean
that a graphicimage is built from a large number of
very small dots (pixels). The higher the resolution,
the larger the number of pixels used in a graphic
display — which gives a more detailed, crisper
image. In practice, hi-res graphics vary according
to a machine’s highest level of resolution. Some
computer’ graphics systems are capable of
producing a resolution of several thousand lines.
Most microcomputer manufacturers use the term
to indicate the highest level of resolution their
machine can produce.

THE HOME COMPUTER ADVANCED COURSE 757

Hexadecimal Abacus
To calculate in hexadecimal
values would require an abacus
with 15 beads per rod. The
beads stand for decimal values
one through 15, represented in
hex notation by the digits 0
through 9 and letters A to F. The
rightmost rod represents units,
then proceeds to the leftin . —
multiples of 16. Thus, each bead
on the second rod from the right
equals 16, the third 16%, or 256,
and so on. The number shown
is decimal 761 (reading from the
left, 2x 256+ 15x 16+1 x9).

This is read as ‘2F9 hex’

MARK WATKINSON

To illustrate the techniques of the top-down
design approach to Assembly language
programming, we now begin to build up a
debugging program. The first thing we must
do is develop the control module, which has
overall command of the lower-level modules
that perform more specific activities.

We shall first take ; a brief look at the snecteation
and design stages for the production of a
debugger. The specification is reasonably
straightforward; we have already looked at the
functions we would expect such a program to
provide (see page 739).

The inputs to the debugger will be:

I. A program to debug: We will assume that the
debugger is loaded with the program it is to debug
already in memory.
2. Commands: We must decide whether the
commands are to be entered directly or as choices
from a menu. We will enter single-character
commands from the list given in the margin.
3. Addresses: These would presumably be entered
in hex, so it will be necessary to convert a string of
ASCII hex digits to a 16-bit binary number.

The outputs from the debugger will be:

Ll. ‘Echoes’ of input characters: Remember that
keypresses do not automatically generate
characters on the screen — the computer must be
programmed to do this (this is called ‘echoing’).
2. Eight- and 16-bit numbers: These are accepted
as strings of hex digits.
3. Strings: These are used to label the above.

There are many ways in which a program could be
split up into modules and then into subroutines,
but there must always be an outer module — the
‘shell’ — which ties all the others together. For our
debugger program, this will take the form:

THE MAIN MODULE
Data:

Start-Address o program (16- bit) |
- Prompt for command entry (single ASCII character

>")

Command Character is a single ASCII character (do
we allow lower-case characters?)

Break-Address is the address of the handler routine
that services the SWI interrupt

Process: |
Set up Interrupt |
GET Start-Address
REPEAT

DISPLAY Prompt

758 THE HOME COMPUTER ADVANCED COURSE

BUG REPELLENT

REPEAT
— Get Command >

UNTIL Command is valid
DISPLAY (Echo) Command
IF Command = ‘B’ THEN

Insert-Breakpoint }
ELSE IF Command = ‘U’ THEN

Remove-Breakpoint
ERSE IF. | ;

~ Until Command = ‘Q’
End of Main Module
From this we now have a good idea of the routines
that will be required. A module is not the same
thing as a subroutine, however. Clearly, there are
several subroutines that logically go together in
groups with shared data — one such module, for
example, might deal with breakpoints. The next
stage of refinement shows how we might design
such a module:

MODULE BREAKPOINTS
Data:

Breakpoint-Table is an array of 16-bit addresses
where breakpoint addresses can be stored

Removed-Values is an array of eight-bit values
corresponding to the above table. The op-codes
that get replaced by an SWI instruction at the

~ breakpoint can be stored in this
Number-Of-Breakpoints is an eight-bit value

containing the number of active breakpoints
7 is an eight-bit value, which contains
the next breakpoint that will be encountered in the
run

SWI-Opcode is an eight-bit op-code for the SWI -
instruction

Process1: Insert-Breakpoint
IF Number-Of-Breakpoints < MAX THEN

Get-Address | |
Add 1 to Number-Of-Breakpoints
Store Address in Breakpoint-Table

~ (Number-Of-Breakpoints)
ENDIF

End Of Process1

Process2: Set-Up-Breakpoint(N)
(N tells us which of the eel SIE in the table is to

be set up)
Get-Address in Breakpoint-Table(N)
Get Op-code at that Address
Store itin Removed-Values(N)
Store SWl-Opcode at Address

End of Process2

Process2 is at the stage where we could begin
coding it. There are four data values that must be
manipulated: N, the parameter that tells us which
breakpoint to use, is an eight-bit number in the

es

range (one to ‘Number-Of-Breakpoints _ ho
which we use as an offset into the two tables. Note,
however, that one table is of 16-bit values whereas
the other is of eight-bit values. We will assume that
N is passed in A. The address of the breakpoint
obtained from that table will be put into X. The
removed op-code will be put into B for transfer to
the Removed-Values table. B can then be used to
put the SWI op-code into the appropriate address.

We give the final coded form of Process2 (Set-
Up-Breakpoint Module) here; our next task is to
develop a module to handle input and output. As
you will have seen from the design of the debugger
so far, there are a number of I/O tasks to be
performed by the program. For the moment, we
will assume the existence of two subroutines: INCH,
which will input a single character into the A
register from the keyboard; and OUTCH, which will
send a character from A to the screen at the current
cursor position. The routines required by this
module are:

1. GetCommand: Input the next command from the
keyboard.
2. GetAddress: Get a hex ndciiees (one to four
characters long) from the keyboard.
3. GetValue: Get a hex value (one or two characters
long) to modify the value of a memory location.
4, DisplayValue: Display a two- character hex value on
the screen. |
5. DisplayAddress: Display a four-character hex address
on the screen.

Our approach illustrates the difference between
the top-down and the bottom-up methods of
programming. The top-down approach might
lead us to define and code these operations
independently, thus ending up with a number of
separate routines that do essentially the same
thing. The bottom-up approach can produce a
saving in time, effort and space by simply writing a
few useful routines that are used in a number of
different circumstances. These routines are:

GETCH: To input a single character into A, checking
against a list of valid characters (command letters or hex
digits), echoing valid characters and ignoring others. ©
GETHX2: To use GETCH to get two hex digits and
convert them into an eight-bit number.
GETHX4: To get four hex digits to form a 16-bit number.
PUTHEX: To display an eight-bit number as two hex
digits. (This can be called twice to display a 16-bit
number.)

PUTCR: To output a carriage return (or carriage return
and line feed if necessary).

These five routines need to be developed i in turn.
First, we will consider the design of GETCH.

GET CHARACTER ROUTINE
Data: |

Inchar is an ASCII character input from the keyboard
(held in A)
Valid-Chars holds the 16-bit address of the table of
valid characters
Number-Of-Valid-Chars is an eight-bit value

Chars Searched is an eight-bit counter
Process:

REPEAT
Get next Inchar
Set Chars-Searched to (Number-Of-Valid-Chars — 1)
While Valid-Chars(Chars-Searched) < > Inchar

- AND Chars-Searched >=0
Decrement Chars-Searched

Until Chars-Searched >=0
DISPLAY Inchar

In order to code this, we must use A to store Inch ar,
and the 16-bit Valid-Chars value can be passed and
kept in X. The Number-Of-Valid-Chars can be passed
in B, but will need to be kept more permanently, by
pushing it onto the stack. B can then be used for
Chars-Searched. Note that B will return the offset
into the table, which will be useful in command
Inlet Praga and hex conversion.
We give the final coded form of this routine

here. In the next instalment of the course, we will
develop the other routines required by the input/
output module.

THE HOME COMPUTER ADVANCED COURSE 759

~ RED ALERT ©

Seek And Destroy |
The pilot of the Flyerfox can
glean as much information
about the positions of the
enemy fighters from the
instrument panel as by
searching the sky. The dots on
the radar screen are aircraft,
although not all will attack. The
relative height of the MiGs is
shown by the two white squares
on either side of the altimeter.
The compass aids in relocatin
the Jumbo

be used without any additional hardware.

A new American computer game offers
Commodore 64 owners the chance to
engage enemy fighters in mid-air dogfights.
Flight simulation programs are common
enough, but Tymac’s Flyerfox has the added
bonus of built-in speech routines that may

Although computer games have come a long way
since the early days of Space Invaders (see page
615), most of these advances have been in the
development of graphics. Programmers have been
chiefly concerned with finding new ways of
squeezing the data for an increasing number of
graphic screens into a limited amount of RAM. In
the meantime, the excellent sound capabilities of
many home computers have largely been ignored.

Now the American company Tymac has
begun UK distribution of a series of games that
incorporate speech synthesis without actually
using a speech interface. The first of these

- programs to become widely available is Flyerfox
for the Commodore 64. This is a flight simulation —
program in which the player is ‘flying’ a fighter
plane that has to escort a jumbo jet with a high-
ranking government official aboard through
disputed airspace. Enemy MiG fighters attempt to
shoot down the jet, and the player’s objective is to
engage and destroy the enemy aircraft. The speech
synthesis used in the game involves a series of
messages transmitted from the jumbo to the
player/pilot.

The speech synthesiser is a part of software that
takes up around 11 Kbytes of memory to store the
data used to recreate the required phrases.
Flyerfox uses the ‘linear predictive’ coding
method. In this system, words are converted into

760 THE HOME COMPUTER ADVANCED COURSE

digital signals, which are then stored in RAM.
When a particular word is needed, the
corresponding digital data is accessed, and the
word reproduced via the Commodore’s SID chip.

The game’s graphics are in high resolution
throughout. The screen display consists of the
view forwards, showing the sky as seen through
the cockpit window and the instrument panel.
Various navigation aids are supplied, including a
compass and a radar panel that shows the
approaching MiG fighters, giving the player time
to prepare for combat. A further aid is provided by
two flashing lights, one on each side of the artificial
horizon, which tell the player if the MiGs are
above or below cockpit level.

The dogfight sequences are fast and very
realistic. When a MiG appears onscreen, the
program produces a warning beep and the player
must then manoeuvre the Flyerfox so that the
attacker is in the cross-hairs of his gunsight. This is _
not easy, as the planes dodge and dive at great
speed. Once the target is fixed in the sights, the
player may then fire the heat-seeking missiles;
however, these are not infallible and the enemy
fighters often escape.

Although the graphics are of a high quality, they
do not offer much variety. The illusion of
movement is achieved by changing cloud patterns,
and the ground is simply a scrolling grid. It must
also be said that the airliner itself adds very little to
the game. Leaving aside the obvious parallel with
the Korean Jumbo 007, which leaves the game
open to charges of tastelessness, it is difficult to see

_ why the airliner is included. It can be viewed from
the rear only, and the Flyerfox is unable to

overtake it when trying to engage the enemy
fighters. Furthermore, unlike a real aircraft, the
Jumbo does not even attempt to take evasive
action when attacked.

Flyerfox certainly represents a new trend in
computer games. Speech synthesis within a
program is a subject that has been considered for
some time. Now Tymac has produced a game that
uses speech but which requires no special interface
or hardware device. As such, it may well come to
be regarded as a landmark in the development of
the computer game. |

eae .

Rotate and Shift Group

L (HL) (VY +d)

po
© ee

wn a7

pag | sa] sa | sa | oe = 5

Om =~ oO Om = w tO. Ao

OO moO nO = © + ©) Oo © a Reo nO ont = © o@ 58 + Ow Ow Ow Go Om

: E BS ! : - 5)

= C} = © on Og oo Ow ae @ eB oO og Mm oo: Om TO ow

RO oO

Go

Es

ami om ao ee) nO SMO; NO. mo Mm ow Dw

oo no nO =O i a 20 S ao we nO ow oo ag

